APPENDIX A

Equations in Electronics

In solving quantitative problems, learners should be able to use correctly the following relationships, using standard SI units, without them being provided:

$\mathrm{V}=\mathrm{IR}$	definition of resistance
$\mathrm{P}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$	power relationships
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\ldots$	resistors in series
$\underline{1}=\underline{1}+\frac{1}{\underline{1}}+\ldots$	resistors in parallel
$\mathrm{R} \quad \mathrm{R}_{1} \quad \mathrm{R}_{2}$	
$\mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$	two resistors in parallel
$\mathrm{V}_{\text {out }}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{~V}_{\text {IN }}$	potential divider
$\mathrm{E}=\mathrm{Pt}$	energy transfer
$\begin{aligned} & \mathrm{A} .1=\mathrm{A}, \mathrm{~A} .0=0, \mathrm{~A} . \mathrm{A}=\mathrm{A}, \mathrm{~A} . \overline{\mathrm{A}}=0 \\ & \mathrm{~A}+1=1, \mathrm{~A}+0=\mathrm{A}, \mathrm{~A}+\mathrm{A}=\mathrm{A}, \mathrm{~A}+\overline{\mathrm{A}}=1 \end{aligned}$	Boolean identities
$\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$	de Morgan's theorem
$\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$	de Morgan's theorem

$\overline{\mathrm{A} \cdot \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
de Morgan's theorem

In addition, learners should be able to select correctly from a list and apply the following relationships:
$C=\frac{Q}{V}$
$\underline{1}=\underline{1}+\underline{1}$
$\begin{array}{lll}C & \mathrm{C}_{1} & \mathrm{C}_{2}\end{array}$

$$
\mathrm{C}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}
$$

$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$
$\mathrm{A}+\overline{\mathrm{A}} \cdot \mathrm{B}=\mathrm{A}+\mathrm{B}$
$A \cdot B+A=A \cdot(B+1)=A$
$\mathrm{G}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{IN}}}$
$\mathrm{G}=1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}$
$G=-\frac{R_{F}}{R_{\mathrm{IN}}}$
slew rate $=\frac{\Delta \mathrm{V}_{\text {our }}}{\Delta \mathrm{t}}$
slew rate $=2 \pi \mathrm{f}_{P}$

$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{S}}$ for $\mathrm{V}_{+}>\mathrm{V}_{-}$
$\mathrm{V}_{\text {out }}=-\mathrm{V}_{\mathrm{S}}$ for $\mathrm{V}_{+}<\mathrm{V}_{-}$
$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{IN}}$
$\mathrm{T}=\mathrm{RC}$
$V_{c}=V_{0}\left(1-e^{-\frac{1}{\mathrm{RC}}}\right)$
$\mathrm{t}=-\operatorname{RCln}\left(1-\underline{\mathrm{V}_{\mathrm{C}}}\right)$
$\left(\mathrm{V}_{0}\right)$
$\mathrm{V}=\mathrm{V} \mathrm{e}^{-\mathrm{RC}}$
c 0
$\mathrm{t}=-\mathrm{RCln}\binom{(\mathrm{V})}{\mathrm{V}_{0}}$
capacitors in parallel

Boolean identities
amplifier voltage gain
non-inverting op-amp circuit voltage gain
inverting op-amp circuit voltage gain
definition of slew rate
minimum slew rate for distortion of free sinusoidal signal
summing amplifier output voltage
comparator output voltage
voltage follower circuit
time constant
charging capacitor
charging capacitor
discharging capacitor
discharging capacitor

$$
\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}_{0}}{\sqrt{2}} ; \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{0}}{\sqrt{2}}
$$

rms values
$\mathrm{I}_{\mathrm{C}}=\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B}}$
$\underset{\mathrm{D}}{\mathrm{I}}=\underset{\mathrm{M}}{\mathrm{M}} \mathrm{GS}-\mathrm{V}-3)$
$\mathrm{P}=\mathrm{I}_{\mathrm{D}}^{2} \mathrm{r}_{\mathrm{DSon}}$
$\mathrm{f}=\frac{1}{\mathrm{~T}}$
$\mathrm{T}=1.1 \mathrm{RC}$
$\mathrm{t}_{\mathrm{H}}=0.7\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}$
$\mathrm{t}_{\mathrm{L}}=0.7 \mathrm{R}_{2} \mathrm{C}$
$f=\frac{1.44}{\left(R_{1}+2 R_{2}\right) C}$
$\frac{T_{\text {ON }}}{\mathrm{T}_{\text {off }}}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}$
$\mathrm{f} \approx \frac{1}{\mathrm{RC}}$
$\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{I}}{\mathrm{f}_{\mathrm{r}} \mathrm{C}}$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}$
$\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$
$f_{b}=\frac{1}{2 \pi R C}$
$\mathrm{V}_{\text {OUT }} \approx \mathrm{V}_{\text {IN }}-0.7$
$\mathrm{V}_{\mathrm{OUT}} \approx \mathrm{V}_{\mathrm{IN}}-3$
$\underset{\text { out }}{\mathrm{V}}=\mathrm{V}\left(\begin{array}{l}\text { DIFF } \\ \mathrm{R} \\ \mathrm{R}_{1}\end{array}\right)$
bipolar transistor

MOSFET
power dissipated in a MOSFET
frequency, period relationship

555 monostable
mark time of a 555 astable circuit
space time of a 555 astable circuit
frequency of a 555 astable circuit
mark/space ratio of an astable

Schmitt astable circuit
ripple voltage
capacitive reactance
inductive reactance
impedance of a series circuit
break frequencies for $R C$ filters
for an emitter follower
for a source follower
difference amplifier

$$
\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

$\mathrm{R}_{\mathrm{D}}=\frac{\mathrm{L}}{\mathrm{r}_{\mathrm{L}} \mathrm{C}}$
dynamic resistance
$\mathrm{N}_{\mathrm{CH}}=\frac{\text { available bandwidth }}{\text { channel bandwidth }}$
capacity of transmission media
maximum data rate $=2 \times$ available bandwidth data rate
$\mathrm{G}_{\mathrm{dB}}=10 \log _{10} \frac{\mathrm{P}_{\mathrm{OUT}}}{\mathrm{P}_{\mathrm{IN}}}$

SNR $=10 \log \xrightarrow{\mathrm{P}_{\mathrm{S}}}=20 \log \mathrm{~V}_{\mathrm{S}}$
${ }^{\text {dB }} \quad{ }^{10} \mathrm{P}_{\mathrm{N}} \quad{ }^{10} \overline{\mathrm{~V}_{\mathrm{N}}}$
$Q=\frac{\mathrm{f}_{0}}{\text { bandwidth }}=\frac{2 \pi \mathrm{f}_{0} \mathrm{~L}}{\mathrm{r}_{\mathrm{L}}}$
$\mathrm{m}=\frac{\left(\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}\right)}{\left(\mathrm{V}_{\text {max }}+\mathrm{V}_{\text {min }}\right)} \times 100 \%$
$\beta=\frac{\Delta \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{i}}}$
Bandwidth $=2\left(\Delta \mathrm{f}_{0}+\mathrm{f}_{\mathrm{i}}\right)=2(1+\beta) \mathrm{f}$
$\mathrm{c}=\mathrm{f} \lambda$
$\underset{\mathrm{L}}{\mathrm{V}} \approx \mathrm{V}_{\mathrm{Z}}\binom{\left.1+\mathrm{R}_{\mathrm{F}}\right)}{\mathrm{R}_{1}}$
$\phi=\tan ^{-1}(\mathrm{R})$

$$
\left(\overline{X_{c}}\right)
$$

resolution $=\frac{\mathrm{i} / \mathrm{p} \text { voltage range }}{2^{\mathrm{n}}}$
$\mathrm{P}_{\text {MAX }}=8 \mathrm{~V}^{\mathrm{s}}$
L
gain in decibels
signal to noise ratio

Q-factor
depth of modulation
modulation index
transmitted FM bandwidth
wave speed
stabilised power supply
triac phase control

ADC/PCM resolution
power amplifier

APPENDIX B

Mathematical requirements and exemplification

In order to be able to develop their skills, knowledge and understanding in electronics, learners need to have been taught, and to have acquired competence in the following areas of mathematics indicated in the table below.

The table illustrates where these mathematical skills may be developed and could be assessed. The list of examples is not exhaustive. These skills could be developed in other areas of the specification content.

$\left.$| | Mathematical skill Exemplification of mathematical skill
 (assessment is not limited to the
 examples given below)
 E.0 - arithmetic and numerical computation | |
| :--- | :--- | :--- |
| E.0.1 | Recognise and make use of
 appropriate units in calculations | Convert between units with different prefixes,
 e.g. A to mA
 Identify the correct units for physical
 properties such as Hz, the unit for frequency |
| E.0.2 | Recognise and use expressions in
 decimal and standard form | Use frequencies expressed in standard form
 such as 2.5 $\times 10^{7} \mathrm{~Hz}$ |
| E.0.3 | Use fractions, ratios and percentages | Calculate the fraction of the charge lost from
 a capacitor in a given time |
| E.0.4 | Estimate results | Estimate the resistor values needed in a
 potential divider so that the output voltage
 does not drop significantly |
| E.0.5 | Use calculators to handle power
 functions, exponential and logarithm
 functions | Calculate the power rating required for a
 resistor
 Calculate the time constant from a decay
 curve |
| E.0.6 | Use calculators to handle tan and
 tan | |
| E.1 functions | | | | Calculate the phase angle for a triac phase- |
| :--- |
| control circuit | \right\rvert\,

E.2.3	Substitute numerical values into algebraic equations using appropriate units for physical quantities	Calculate the frequency of a 555 astable by substituting the values for R_{1}, R_{2} and C into the equation: $\mathrm{f}=\frac{1.44}{\left(\mathrm{R}_{1}+2 \mathrm{R}_{2}\right) \mathrm{C}}$
E.2.4	Solve algebraic equations	Find a capacitor value for a given time delay and resistance in a 555 monostable
E.2.5	Use Boolean algebra	Simplify a logic system
E.3 - graphs	Translate information between graphical, numerical and algebraic forms	Measure the ripple voltage from output graphs for rectified power supplies
E.3.2	Plot two variables from experimental or other data	Plot I-V characteristics of a diode
E.3.3	Determine the slope of a graph	Calculate a resistance value from a V-I graph
E.3.4	Calculate the rate of change from a graph showing a linear relationship	Calculate the slew rate from a V-t graph
E.3.5	Draw and use the slope of a tangent to a curve as a measure of rate of change	Calculate the gain of an amplifier from the transfer characteristic
E.3.6	Sketch relationships which are modelled by $\mathrm{y}=$ sin x and $\mathrm{y}=$ sin ${ }^{2} \mathrm{x}$	Sketch a graph of power against time for an alternating current in a resistor
E.3.7	Use log-log and semi-log graph grids	Sketch and interpret gain curves for filters

